Final Project Report
Cilium

Zachary Yeo
zyeo@utexas.edu
UT Austin, USA

Abstract

This paper is a study of Cilium being deployed in a Kuber-
netes cluster. Cilium is a networking and security solution
used by many major cloud providers including Google Cloud,
AWS, and Azure. This popularity is a testament to its scal-
ability, performance, and rich feature set. This paper aims
to study how Cilium is deployed in a Kubernetes cluster to
examine its ability to enhance the security and networking
capabilities of containerized applications. It also aims to val-
idate current benchmarks that have been provided by the
Cilium team. Through this study, we not only validate previ-
ous findings but also extend our understanding of Cilium’s
efficacy in Kubernetes deployments.

ACM Reference Format:

Zachary Yeo. 2025. Final Project Report Cilium. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

With the exponential growth of containerization technolo-
gies such as Docker and Kubernetes, the demand for robust
network security solutions has surged. Cilium is currently a
key player in this landscape, offering API-aware network se-
curity filtering tailored for container frameworks. This surge
in interest can be attributed to the evolving technologies,
where modern cloud computing demands scalable, perfor-
mant, and feature-rich solutions for securing containerized
applications. What makes Cilium stand out from its compe-
tition is the user of Enhanced Berkeley Packet Filter (eBPF)
technology. This technology allows Cilium to indirectly con-
trol logic inside the Linux kernel without writing a kernel
module. This safer approach also means that we are able
to gain fine-grain and quick insights into network activ-
ities at multiple layers of the networking stack. Cilium’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2025 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

widespread adoption by major cloud providers attests to
its effectiveness in addressing the security,networking, and
observability challenges posed by contemporary container
orchestration environments.

This study delves into the deployment of Cilium within a
Kubernetes cluster, aiming to validate its efficacy in enhanc-
ing the security and networking capabilities. This study will
be conducted using MicroK8s v1.28.3 for Kubernetes and
Cilium version 1.13.4 with Hubble UI enabled and Cilium
Service Mesh disabled. This is all run on a VirtualBox VM
with Ubuntu version 20.04.1. The following sections will go
over networking, observability, security, and benchmarks.
First, we will look at how Cilium CNI uses eBPF technology
to simplify networking within a Kubernetes Cluster. Then,
we will see how Cilium provides fine-grained visibility into
network traffic using Cilium’s Hubble UL Next, we will take
a look at how Cilium provides security using L3/L4, L7, and
DNS based networking policies. Lastly we will run a few
benchmarks to see how Cilium eBPF performs compared to
other networking solutions. These findings hope to extend
the understanding of Cilium’s role in fortifying the security
of modern cloud infrastructures.

2 Motivation

I have chosen to do a study on Cilium to gain deeper insight
on containerized technology and the tooling used within
them. With Docker and Kubernetes becoming mainstream,
understanding how tools like Cilium secure containerized
applications has become crucial. My motivation is simple:
I want to know how Cilium works, how it contributes to
making containerized applications more secure, and why it
is competitive to other networking options out there.

In addition, this study gives me an opportunity to learn
about the use of eBPFs. This technology not only allows
Cilium to indirectly control logic within the Linux kernel
without the complexities of writing a kernel module but also
introduces a level of safety and efficiency that is revolution-
ary in the realm of container network security.

This study is a practical exploration. I want to grasp how
Cilium’s technical aspects, particularly eBPF, make container
security efficient and fine-tuned. My goal is not just to gain
knowledge but also to see how this understanding can be
applied to enhance the security of containerized applications.
In essence, this study is a step towards becoming well-versed

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

in securing modern cloud-native architectures and leverag-
ing tools like Cilium to do so.

3 Understanding Cilium

In this section we will be going over the architecture of
Cilium CNI, how ebpf technology is used in Cilium, Hubble
UL, and how security policies are implemented in Cilium.

Firstly, what is Cilium CNI? Cilium CNI is a container
networking interface. This means that Cilium is responsible
for managing the network connectivity between containers
within a Kubernetes cluster. As a CNI, Cilium ensures that
communication between different containers is seamless,
efficient, and secure. Cilium also leverages Kubernetes labels
and selectors to define fine-grained policies based on pod
identity, namespace, labels, and other attributes to enforce
network policies, perform load balancing, and enable service
discovery within the cluster.

Use Networking Security Observability &
CS Tracing
aAses
WHeBPF b= #
Projects R
& | P
v HeBPF §-G0G® ~ =,
Space SDKs Application
Verifier & JIT os
Runtime
HeBPF
a
" Kemel Helper API Q -
Ketmel Kernel Runtime

Figure 1. eBPF diagram.

At its core, Cilium uses eBPF technology. By leveraging
eBPF, Cilium can intercept and process network packets
at various stages within the Linux kernel, enabling quick
decision-making based on predefined policies. This is achieved
by writing custom eBPF programs that exist in the User space
that utilize designated "hooks" to interact directly to the eBPF
runtime operating in the Kernel space. These hooks serve as
entry points for executing the custom logic, facilitating the
enforcement of security policies, load balancing, and other
network-related tasks directly within the kernel.

In addition, the eBPF programs in Cilium can be dynami-
cally loaded and updated without requiring kernel module
changes or system restarts. This dynamic adaptability en-
sures that Cilium can swiftly respond to changes in network
conditions, security requirements, or the addition/removal
of containers within the Kubernetes cluster. The efficiency
of eBPF’s in-kernel execution minimizes context-switching
overhead, contributing to Cilium’s high-performance net-
work management.

Zachary Yeo

<« c O D localhost amespace=kube-system w ® @ a

£3 kube-system = Fiter by: label key—val ip=1.1.1.1, dns=google.com, identity=42, pod=frontend s o 9.1 flowss -

Figure 2. Hubble UL

Cilium also provides observability through the Hubble UI,
a component that provides a visual interface for monitoring
and understanding network traffic within the Kubernetes
cluster. Hubble complements Cilium’s capabilities by offering
insights into communication patterns, allowing for real-time
visibility into how containers interact with each other. This
feature is especially useful when you need to troubleshoot
complex network issues in your kubernetes infrastructure.

Lastly, Cilium provides comprehensive security policies
that enable administrators to define and enforce granular
controls over communication between microservices. Under-
standing how Cilium enforces security policies at different
layers of the OSI model is crucial for ensuring the integrity
and confidentiality. Specifically, Cilium allows configuration
of L3/L4, L7, and DNS based networking policies. L3/L4 poli-
cies enable administrators to define rules based on network
and transport layer attributes, while L7 policies allow for
application-specific controls, such as routing based on URL
paths or HTTP methods. The inclusion of DNS-based poli-
cies introduces a service-centric approach, where policies
are defined based on domain names. Since all these policies
are enforced in the Kernel space, Cilium ensures a consistent
and efficient application of security controls, regardless of
the specific policy type. This approach is particularly ad-
vantageous in dynamic Kubernetes environments, where
container workloads can change rapidly.

4 Our Architecture

In this section, we will go over the architecture used for a
demo showing Cilium networking policies in action. We will
also cover the architectural setup for running benchmark
testing for Cilium’s ebpf host routing.

Final Project Report
Cilium

default

tiefighter
3 deathstar

o @ + 80 < TP © HTTP

xwing

Y kube-dns

L] © » 53 - UDP

Figure 3. Hubble view of StarWars microservices within our
cluster.

To show Cilium networking policies in action we have a
StarWars demo that replicates the interaction between differ-
ent spaceships in the StarWars universe. We are running one
MicroK8s cluster. Within, we have three microservices ap-
plications we will be using: deathstar, tiefighter, and xwing,.
The deathstar runs an HTTP webservice on port 80, and is
load-balanced across two replica pods. The deathstar service
provides "landing services" to the empire’s spaceships so that
they can request a landing port. The tiefighter pod represents
a landing-request client service on a typical empire ship and
xwing represents a similar service on an alliance ship. These
two pods are for testing different security policies for access
control to deathstar landing services.

:~$ kubectl -n kube-system exec cilium-nédcx -- cilium policy get
Defaulted container "cilium-agent" out of: cilium-agent, config (init), mount-cgroup (init), 4l
it)
[
{
"endpointSelector":
"matchLabel:
"any:clas: deathstar"”,
"any:or empire",
"k8s:io.kubernetes.pod.namespace": "default"

X
"ingress": [
"fromEndpoints": [
"matchLabe
"any:org"
"k8s:1o.kubernetes.pod.namespace": "default"

}
3

1,
"toPorts”: [

"ports": [
"port": "8@",
"protocol”: "TCP"
1
1,
"rules": {
"http": [

"path”: "/vi/request-landing",
"method”: "POST"

Figure 4. L3/L4 and L7 policies for deathstar service.

In our demonstration, we implement both L3/L4 and L7
policies. Above we can see that we restrict ingress to the

Conference’17, July 2017, Washington, DC, USA

deathstar service with labels (L3/L4) and with API rules (L7).
Only ships with the label "org:empire" are allowed to submit
API calls to the deathstar. On top of that, only POST requests
are allowed to be made to the deathstar service.

VM (Cilium Legacy) %

VM (Calico) @
MicroK8s cluster MicroK8s cluster

pod: Cilium
(legacy host
routing)

Terminal running
NetPerf Command

Terminal running

pod: Netpert od: Calico | | Pod: NetPert
Server P Server NetPerf Command

VM (Cilium eBPF) oa %

Microk8s cluster

pod: Cilium
(eBPF host
touting)

pod: NetPer

o e

Figure 5. Block diagram for benchmark architecture.

We also wanted to conduct throughput and latency bench-
marks to assess the overheads associated with using Cil-
ium eBPF compared to other CNIs. To do this, we set up
three separate VMs. The first VM runs microK8s with Cil-
ium legacy host routing (without eBPF), the second VM runs
microK8s with Cilium eBPF host routing, and the third VM
runs microK8s with Calico. In each of these environments,
we deploy a pod running a NetPerf net server listening on
port 12865. This benchmark setup allows us to assess the
impact of adopting Cilium’s eBPF host routing on the overall
performance.

Next, we ran two sets of tests (throughput and latency)
on each of the VMs. We ran each of these tests 8 times using
these two commands:

netperf-H 10.1.0.214 -1 30 -t TCP_STREAM
netperf-H 10.1.0.214 -1 30 -t TCP_RR

Figure 6. Netperf-Commands.

With the results, we created two box plots, one for through-
put and another for latency. We chose to use box plots be-
cause they provide the most accurate visualization of our
results given our small sample size. Both of which we will
see in the next section.

Conference’17, July 2017, Washington, DC, USA

5 Experimental Results

default

. deathstar

N © >80 - TcP - HTTP

tiefighter

/v1/exhaust-port

/v1/request-landing

xwing

Figure 7. Hubble Ul showing possible API connections to
deathstar service.

Figure 8. Result of applying Cilium networking policies.

Here are the results of the StarWars demo that aims to show
Cilium networking policies in action.

Zachary Yeo

In Figure 9, we have a box plot of throughput benchmarks
for the three configurations we mentioned before: Cilium
with Legacy host routing, Cilium with eBPF host routing,
and Calico. Throughput is the rate at which data is success-
fully transferred between endpoints in the network. From
this figure, we can see that Cilium eBPF has, by far, the
most throughput per second and thus the best performance
compared to the other two configurations. These results are
aligned with the benchmarks that Cilium has on its web-
site[11].

Latency Comparison Box Plot

30000

28000 ——

< 26000
L7
°
12
24000 5
=
© 22000 o Q
>
g]
& 20000 —L
@
-
18000
16000
14000 Q

Cilium eBPF Calico
Network Solutions

Cilium Legacy

Firstly, you can see that if the xwing, with the label "org=alliance",

requests a landing on deathstar service, the request will hang.
This is a demonstration of defining a L3/L4 "identity-aware"
networking rule as the xwing pod isn’t able to make a con-
nection to the service.

You can also see that if a tiefighter pod submits a PUT
request on the deathstar service, the pod is denied access.
This is an example of a Cilium L7 security policy because
even though the pod has access to the service, it is only per-
mitted certain API resources. This is also known as a “least
privilege” security approach for communication between
microservices which is generally good practice.

Throughput Comparison Box Plot

12000 %

o
5 10000
@
]
2
o
©
<
© 8000
=1
Q.
<
=]
g [*]
£ 6000 o
=
4000
pre——
Cilium Legacy Cilium eBPF Calico

Network Solutions

Figure 9. Box diagram for throughput benchmarks for three
CNIs.

Figure 10. Box diagram for latency benchmarks for three
CNIs.

In Figure 10, we have a box plot of latency benchmarks
for the same three configurations. Latency measures how
efficiently a single network packet can be processed. Lower
latency is better. It also means that more packets are pro-
cessed per second. From this figure, we can see that Cilium
eBPF processes the most requests per second and thus has by
far the best performance compared to the other two configu-
rations. These results are also in line with the benchmarks
that Cilium has on its website[11].

6 Related Work

One related work using eBPF technology is Pyroscope. Py-
roscope is an open-source solution that specializes in con-
tinuous profiling[13]. Deployable on Linux, Docker, and Ku-
bernetes, Pyroscope offers a unique capability to ingest pro-
files not only from its dedicated Pyroscope Agents but also
from other profilers available on the market. This versatil-
ity makes Pyroscope a compelling choice for organizations
seeking efficient and non-intrusive profiling methods. With
the use of eBPFs Pyroscope lets you profile without the need
to modify application code, thereby minimizing overhead.
In addition, its integration with OpenTelemetry, support for
a query language named FlameQL, and the ability to export
metrics enhance its observability features, making Pyroscope
a valuable tool for understanding resource consumption and

Final Project Report
Cilium

optimizing code performance in many production environ-
ments.

Another tool that is starting to leverage the powers of eBPF
technology is Datadog. Datadog has introduced Universal
Service Monitoring (USM), a feature that automatically de-
tects and monitors all services in complex, dynamic environ-
ments[14]. Through the use of eBPF, Datadog’s USM enables
automatic parsing of HTTP traffic, providing visibility into
critical metrics such as request, error, and duration for every
service. It also has a Service Map feature that allows users to
visualize dependencies between services, aiding in incident
resolution by understanding the relationships within a sys-
tem. With USM, Datadog aims to simplify the monitoring
of service health, streamline troubleshooting processes, and
enhance overall observability.

Lastly, as with any technology, the landscape of network
security is dynamic, making it important to remain aware of
potential vulnerabilities. Resources such as the vulnerability
database on Snyk (Cilium Vulnerability Database) provide
insights into potential exploits and vulnerabilities associ-
ated with different versions of Cilium[12]. This awareness is
crucial for maintaining the integrity and security of Cilium
deployments, allowing organizations to make informed deci-
sions about version compatibility and mitigation strategies.

7 Conclusions

This study has provided valuable insights into the deploy-
ment and performance of Cilium in a Kubernetes cluster. By
examining Cilium’s networking, security, and observabil-
ity capabilities, we aimed to validate its efficacy and gain a
broader understanding of its role in securing containerized
applications.

The architecture of Cilium CNI, its utilization of eBPF tech-
nology, Hubble UI for observability, and the implementation
of fine-grained security policies were thoroughly explored.
The StarWars demo demonstrated how Cilium’s policies can
be applied to control access and interactions between mi-
croservices, showcasing its versatility in securing modern
cloud-native architectures.

Benchmarking further confirmed Cilium’s exceptional per-
formance, especially with eBPF host routing, which outper-
formed legacy host routing and alternative solutions like
Calico in terms of both throughput and latency. These re-
sults align with benchmarks provided by Cilium, reaffirming
its reputation for scalability and efficiency.

By exploring Cilium and its use of eBPF technology, I have
gained valuable insights into the intersection of container-
ized networking, security, and observability within Kuber-
netes environments. In addition, the practical understanding
acquired through this study will enable me to more con-
fidently navigate the complexities of modern cloud-native
architectures in the future.

Conference’17, July 2017, Washington, DC, USA

8 References
[1] A. Dinaburg, “Pitfalls of relying on EBPF for Security

Monitoring (and some solutions),” Trail of Bits Blog, https://blog.trailofbits.
of-relying-on-ebpf-for-security-monitoring-and-some-solutions/
(accessed Dec. 13, 2023).

[2] A. Zhang, “Kubernetes Network Learning with Cilium
and EBPF,” Medium, https://addozhang.medium.com/kubernetes-
network-learning-with-cilium-and-ebpf-aafbf3163840 (accessed
Dec. 13, 2023).

[3] “What is eBPF? an introduction and deep dive into the
EBPF technology,” What is eBPF? An Introduction and Deep
Dive into the eBPF Technology, https://ebpf.io/what-is-ebpf/
(accessed Dec. 13, 2023).

[4] “Linux runtime security agent powered by EBPF: Hacker
News,” Linux runtime security agent powered by eBPF |
Hacker News, https://news.ycombinator.com/item?id=37942791: :text=

[5] D. GERMAIN, “Migrating cilium from legacy ipta-
bles routing to native EBPF routing in production,” Medium,
https://deezer.io/migrating-cilium-from-legacy-iptables-routing-
to-native-ebpf-routing-in-production-84a035af1cdé: :text=This

[6] S. C. Amaechi, “Cilium: Empowering kubernetes net-
working and security,” Medium, https://medium.com/cloud-
native-daily/cilium-empowering-kubernetes-networking-and-
security-9d25750e8f44 (accessed Dec. 13, 2023).

[7] D. Lewis, “Hubble series (part 3): Cilium Hubble and
Grafana Better together,” Isovalent, https://isovalent.com/blog/post/cilium-
hubble-with-grafana/ (accessed Dec. 13, 2023).

[8] A. Gupta, Isovalent Enterprise for Cilium on EKS/EKS-

A in AWS Marketplace, https://isovalent.com/blog/post/isovalent-
aws-marketplace/ (accessed Dec. 13, 2023).

[9]J. Colvin, “What is Kube-proxy and why move from Ipt-
ables to ebpf?nbsp;,” Isovalent, https://isovalent.com/blog/post/why-
replace-iptables-with-ebpf/ (accessed Dec. 13, 2023).

[10] Cilium Authors, “Welcome to Cilium’s documenta-
tion! - cilium 1.14.5 documentation,” Welcome to Cilium’s
documentation! - Cilium 1.14.5 documentation, https://docs.cilium.io/en/st
(accessed Dec. 13, 2023).

[11] “CNI benchmark: Understanding cilium network per-
formance,” Cilium, https://cilium.io/blog/2021/05/11/cni-benchmark/
(accessed Dec. 13, 2023).

[12] “Github.com/cilium/cilium vulnerabilities: Snyk,” Find
detailed information and remediation guidance for vulnera-
bilities and misconfigurations., https://security.snyk.io/package/golang/git

[13] G. D. Pietro, “What is continuous profiling, and what
is Pyroscope?,” Is It Observable, https://isitobservable.io/open-
telemetry/what-is-continuous-profiling-and-what-is-pyroscope
(accessed Dec. 13, 2023).

[14] S. Pinkerton, “Datadog,” Automatically discover, map,
and monitor all your services in seconds with Universal Ser-
vice Monitoring, https://www.datadoghq.com/blog/universal-
service-monitoring-datadog/ (accessed Dec. 13, 2023).

	Abstract
	1 Introduction
	2 Motivation
	3 Understanding Cilium
	4 Our Architecture
	5 Experimental Results
	6 Related Work
	7 Conclusions
	8 References

